被c哭着爬走又被拉回来挺进h,添女人下边视频全过程,免费无遮挡无码永久在线观看视频,亚洲尺码与欧洲尺码区别入口跳转

技術(shù)文章

Technical articles

當(dāng)前位置:首頁技術(shù)文章等離子體處理對 硅表面氧空位缺陷工程

等離子體處理對 硅表面氧空位缺陷工程

更新時(shí)間:2020-12-02點(diǎn)擊次數(shù):2926

Electronic Supplementary Information For

Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

treatment for enhancing VOCs sensing performances

Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

Klamchuen e and Xiaodong Fang * a c

aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

bUniversity of Science and Technology of China, Hefei 230026, China

cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

230031, China

d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

PathumThani 12120, Thailand

eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

Thani 12120, Thailand

 

Experimental Section

1.1 Synthesis of CuAlO2 particles

First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

(Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

were dried in an oven at 80 °C for 24 h.

1.2 Fabrication of CuAlO2 sensors

The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

pristine, PT-30, PT-60 and PT-90.

1.3 Characterization and gas sensing test

CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

(HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

(Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

 

flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

 

Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

 

 

Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

 

Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

of surface morphology was obervered via Ar&H2 plasma treatment.

 中國科學(xué)技術(shù)大學(xué)   申請論文提名獎(jiǎng)CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

国产边添边摸边做边爱| 国产又色又爽又黄又免费| 免费人成在线观看网站| 一本一本久久a久久精品综合麻豆 av无码精品久久久久精品免费 | 小sao货水好多真紧h无码视频| 我和岳交换夫妇交换系列| 老太bbwwbbww高潮| 亚洲 小说 欧美 激情 另类| 免费a级毛片18禁网站免费| 国产精品久久久久久久久无码 | 亚洲男同gv片在线观看| 亲嘴脱内衣内裤摸屁股| 男男做a爱过程免费视频| 国产69精品久久久久777| 和少妇人妻邻居做爰无码| 极品美女扒开粉嫩小泬| 国产又黄又爽又湿的免费网站| 偷自视频区视频首页| s货叫大声点c懒烂你的sbxs| 欧美丰满白bwbwxxhd| 国产亚洲精品久久久久久久久动漫| 扒开双腿抽打花蒂惩罚室| 色婷婷香蕉在线一区二区| 中文在线ずっと好きだった| 黄瓜视频在线观看| 女人被黑人嗷嗷惨叫求饶| 年轻的小婊2韩剧中文版| 亚洲熟妇无码八av在线播放| 国产成人一区二区三区影院动漫| 国产免费视频| 国产sm主人调教女m视频| 女沟厕偷窥piss小便| 男人吃奶摸下挵进去好爽在线观 | 国产做a爰片毛片a片美国| 野花日本韩国视频免费8| 女学生被躁到高潮免费视频| 我的变态室友(h)三攻一受| 毛片免费视频| 欧美三级韩国三级日本三斤| 老熟妇仑乱视频一区二区| 成全视频免费高清观看在线|